首页 -> 基础研究 -> 流体力学介导的RNA干扰对小鼠肝脏线粒体融合素基因-2、空腹血糖和血清甘油三酯水平的影响 流体力学介导的RNA干扰对小鼠肝脏线粒体融合素基因-2、空腹血糖和血清甘油三酯水平的影响陈小琳 雷幼蓉 【摘要】 目的 观察流体力学介导的RNA干扰(RNAi)对小鼠肝脏线粒体融合素基因-2(Mfn2)、空腹血糖(FBS)和血清甘油三酯(TG)水平的影响。 方法 将56只雄性BALB/c小鼠随机分为空白对照组(NC组,n=8)、阴性对照组(HK组,n=24)和Mfn2质粒干扰组(Mfn2组,n=24)。HK组小鼠利用流体力学注射75μg阴性对照质粒溶液1.5ml,Mfn2组小鼠利用流体力学注射75μg Mfn2 shRNA质粒溶液1.5ml。应用逆转录-聚合酶链反应和Western blot方法分别测定注射24、72、120h后,小鼠肝脏Mfn2的mRNA和蛋白质表达;同时分别取血测定小鼠FBS和TG水平。多组间比较采用单因素方差分析,两两比较采用Scheffe’s t检验。 结果 质粒注射72、120h后,Mfn2组小鼠肝组织Mfn2 mRNA相对表达量分别为1.00±0.03和1.01±0.053,较HK组(分别为1.14±0.07和1.18±0.07)明显下降(t值分别为4.027和4.234,P值均<0.01);Mfn2蛋白分别为7.81±0.80和8.05±0.15,较HK组(分别为8.01±0.08和8.56±0.01)也明显下降(t值分别为2.941和4.883,P值均<0.05)。注射24h后,Mfn2组小鼠FBS低于HK组[(2.65±0.70)mmol/L比(5.28±0.82)mmol/L,t=6.879,P<0.01],TG高于HK组[(1.96±0.32)mmol/L比(1.12±0.16)mmol/L,t=-6.711,P<0.01)],HK组与NC组之间FBS和TG差异无统计学意义(F值分别为1.412和2.711,P值均>0.05);注射72、12h后,Mfn2组小鼠FBS高于HK组[(7.23±0.82)mmol/L比(5.18±0.69)mmol/L,t=2.050,P<0.01;(7.00±0.67)mmol/L 比(6.05±0.76)mmol/L,t=3.57,P<0.05)],血清TG高于HK组,但差异无统计学意义[(1.53±0.27)mmol/L 比(1.37±0.18)mmol/L,t=0.160,P>0.05;(1.84±0.30)mmol/L比(1.52±0.37)mmol/L,t=0.330,P>0.05)]。 结论 流体力学介导的RNAi在干扰72、120h后可有效抑制肝脏目的基因的表达,抑制Mfn2表达可导致小鼠葡萄糖和脂肪代谢异常。 【关键词】 血糖; 甘油三酯类; RNA干扰; 线粒体融合素基因-2 Effects of hydrodynamics-mediated RNAi on Mfn2 expression, blood sugar and fat levels in mice CHEN Xiao-lin, LEI You-rong. Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China Email: weed-2@163.com 【Abstract】 Objective To investigate the effects of hydrodynamics-mediated RNAi for Mfn2 gene expression in liver and the levels of blood sugar and fat in mice. Methods Fifty-six male BALB/c mice were randomly divided into normal control group (NC, n = 8), negative control group (HK, n = 24) and transfection group (Mfn2, n = 24) according to random digits table. 1.5 ml plasmid (negative control or Mfn2 shRNA, 75μg for each mouse) diluted into phosphate buffered solution (PBS) was injected into the HK and Mfn2 groups mice via hydrodynamic intravascular injection. Mfn2 mRNA and protein expression in hepatic tissue was detected by RT-PCR and Western-blot 24 hours, 72 hours and 120 hours respectively after injection. At the same time, the levels of fasted blood sugar (FBS) and triglyceride (TG) were measured. Results Compared with HK mice, the expressions of Mfn2 mRNA (1.00±0.03 vs 1.14±0.07, t = 4.027, P = 0.007; 1.01±0.053 vs 1.18±0.07, t = 4.234, P = 0.006) and protein (7.81±0.80 vs 8.01±0.08, t = 2.941, P = 0.042; 8.05±0.15 vs 8.56±0.014, t = 4.883, P = 0.039) decreased markedly in Mfn2 mice in 72 and 120 hours after injection. In the fasting state, in 24 hours after injection, FBS in Mfn2 group was significantly lower than that in HK group [(2.65±0.70 vs 5.28±0.82) mmol/L, t = 6.879, P < 0.01] and TG was also significantly higher than that in HK group [(1.96±0.32 vs 1.12±0.16) mmol/L, t = -6.711, P < 0.01]. No statistical differences found between the NC and HK groups for FBS and TG (F = 1.412, P = 0.26; F = 2.711, P = 0.14). The plasma glucose level in Mfn2 mice was significantly higher than that in HK mice [(7.23±0.82 vs 5.18±0.69) mmol/L, t = 2.050, P < 0.01; (7.00±0.67 vs 6.05±0.76) mmol/L, t = 3.57, P = 0.023] in 72 and 120 hours after injection. However, no differences found between the two groups for blood TG [(1.53±0.27 vs 1.37±0.18) mmol/L, t = 0.160, P = 0.23; (1.84±0.30 vs 1.52±0.37) mmol/L, t = 0.330, P = 0.503]. Conclusion The data indicate that hydrodynamics- mediated RNAi for Mfn2 gene can effectively inhibit the expression of target gene in mice liver in 72 and 120 hours after shRNA administration, and the inhibition of hepatic Mfn2 can induce glycometabolic and fat metabolic disorder. 【Key words】 Blood sugar; Triglycerides; RNA interference, ; Mitofusin-2 gene 流体力学注射法是一种高效、安全的活体细胞RNA干扰(RNA interference,RNAi)方法[1-2]。线粒体融合素基因-2(mitofusin-2 gene,Mfn2)是参加线粒体膜融合的重要蛋白质。近年研究结果表明,Mfn2的表达与糖尿病发病密切相关[3-6]。本研究旨在观察通过流体力学介导的RNAi对小鼠肝脏Mfn2基因表达的影响,以及抑制肝脏Mfn2表达对小鼠空腹血糖(fasting blood sugar,FBS)和甘油三酯(TG)水平的影响。 材料与方法 1.质粒:载体pGenesil1.2目的基因载体MFN2-PDS和感受态大肠杆菌DH-5α购自武汉晶赛生物公司,Omega质粒大量提取试剂盒购自美国Omega 公司。质粒载体构建和酶切、测序、有效性鉴定具体方法见文献[7]。山羊抗鼠Mfn2多克隆抗体购自美国Santa Cruz公司,辣根过氧化物酶(HRP)标记的兔抗山羊IgG抗体和电化学发光试剂盒购自美国Pierce公司。 2.实验动物分组和处理:8周龄,体质量16~19g的无特定病原体级BALB/c小鼠购自华中科技大学同济医学院实验动物中心。12h光暗周期,室温20~24℃,小鼠自由进水、进食。将56只雄性BALB/c小鼠按随机数据表随机分为正常对照组(NC组,n=8)、阴性对照组(HK组,n=24)和Mfn2基因干扰组(Mfn2组,n=24);HK组和Mfn2组小鼠按照注射时间24、72、120h又随机分成3组(HK1、HK2、HK3和Mfn2-1、Mfn2-2、Mfn2-3组,n=8)。HK和Mfn2组小鼠鼠尾乙醇消毒后进行尾静脉穿刺注射,HK组小鼠每只注入含75μg阴性对照质粒的磷酸盐缓冲液1.5ml,Mfn2组小鼠每只注入含75μg Mfn2短发卡质粒的磷酸盐缓冲液1.5ml。 3.实验观察:HK组和Mfn2组小鼠分别在注射后24、72、120h处死,NC组小鼠在实验结束时处死,分别空腹取血测定各组小鼠TG、ALT、AST和FBS水平(强生稳豪血糖仪购自美国强生公司);取肝脏组织-70℃冰箱保存。取NC组和HK组、Mfn2组流体力学注射72h后小鼠肝脏组织,以10%中性多聚甲醛缓冲液固定后植入石蜡并切片,光镜下观察;取HK组及Mfn2组72h小鼠肝脏组织投入预冷的2.5%戊二醛溶液中固定、切片,透视电镜下观察。 4.逆转录-聚合酶链反应(RT-PCR):利用Trizol一步法提取肝脏总RNA,紫外分光计测定RNA浓度。取1μg总RNA进行RT-PCR,获得cDNA模板。Mfn2上、下游引物序列分别为5′-GCTGGGACAGTGATGGTCTT-3′和5’-CAGAT ACAGGCTCTCCCTGG-3′;β-肌动蛋白上、下游引物序列分别为5′-TCCCTGGAGAAGAGCTA CGA-3′和5′-TCGTCATACTCCTGCTTGCT-3′。反应参数:94℃ 5min;60℃ 30s,72℃ 30s,共30个循环;72℃ 10min。PCR产物以15g/L琼脂糖凝胶电泳,以Image凝胶图像分析系统进行半定量分析。 5.Western blot:取肝脏组织50mg置于500μl裂解液(1% NP-40,150mmol/L NaCl,50 mmol/L Tris-HCl,pH8.0),冰上匀浆20min后,4℃ 12000r/min离心25min。吸取上清液,加cocktail溶液(0.1% Aprotinin、0.1% Leupeptin、0.035% Pepstain A、8.5%苯甲基磺酰氟)。BCA法测定样品蛋白质浓度。10%十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分离胶,5%浓缩胶,电泳120min。250 mA转膜150min,5%脱脂奶粉37℃封闭1h,第一抗体4℃过夜,第二抗体室温孵育2h,漂洗、曝光、显影,凝胶成像和Glyko BandScan分析软件进行灰度分析。 6.统计学方法:采用SPSS16.0统计软件分析数据,结果以均数±标准差(x-±s)表示。多组间比较采用单因素方差分析,两两比较采用Scheffe’s t检验,P<0.05为差异有统计学意义。 结 果 1. 流体力学介导的RNAi对小鼠肝脏组织Mfn2的mRNA和蛋白质表达水平的影响:质粒注射24h后,Mfn2组与HK组肝组织Mfn2 mRNA(1.00±0.08比1.12±0.24,t=1.024,P>0.05)和Mfn2蛋白表达(7.69±0.14比7.69±0.17,t=0.000,P>0.05)差异无统计学意义;注射72h后,Mfn2组与HK组肝组织Mfn2 mRNA(1.00±0.03比1.14±0.07,t=4.027,P<0.01)和Mfn2蛋白表达(7.81±0.80比8.01±0.08,t=2.941,P<0.05)差异有统计学意义;注射120h后,Mfn2组与HK组肝组织Mfn2 mRNA(1.01±0.05比1.18±0.07,t=4.234,P<0.01)和Mfn2蛋白表达(8.05±0.15比8.56±0.01,t=4.883,P<0.05)差异有统计学意义;见图略。 2.Mfn2、HK和NC组小鼠的FBS和TG水平:注射24h后,Mfn2组小鼠FBS低于HK组[(2.65±0.70)mmol/L比(5.28±0.82)mmol/L,t=6.879,P<0.01],TG高于HK组[(1.96±0.32)mmol/L比(1.12±0.16)mmol/L,t=-6.711,P<0.01],HK组与NC组之间FBS和TG差异无统计学意义[(5.28±0.82)mmol/L比(5.63±1.36)mmol/L,t=0.625,P>0.05;(1.12±0.16)mmol/L比(1.11±0.18)mmol/L,P>0.05];注射72、120h,Mfn2组小鼠FBS高于HK组[(7.23±0.82)mmol/L比(5.18±0.69)mmol/L,P<0.01;(7.00±0.67)mmol/L比(6.05±0.76)mmol/L,P<0.05],血清TG高于HK组,但差异无统计学意义[(1.53±0.27)mmol/L比(1.37±0.18)mmol/L,P>0.05;(1.84±0.30)mmol/L比(1.52±0.37)mmol/L,P>0.05],见图略。单因素方差分析结果显示,NC组与注射24、72、120h HK组间,FBS和血清TG差异均无统计学意义(F值分别为1.412和2.711,P值均>0.05)。 3.流体力学注射Mfn2 shRNA对小鼠血清ALT和AST水平的影响:注射后24h,HK组小鼠血清ALT和AST水平较NC组明显升高(t值分别为-3.612和-3.192,P值均<0.01);Mfn2组小鼠血清ALT和AST水平较HK组明显升高(t值分别为-3.325和-4.685,P值均<0.01);注射后72、120h,3组小鼠血清ALT和AST水平差异无统计学意义(P值均>0.05);见表略。 4.流体力学注射Mfn2 shRNA对小鼠肝组织学和肝细胞超微结构的影响:HE染色光镜下观察,可见NC组及HK组小鼠肝组织结构完整、清晰,肝小叶结构正常,中央静脉大而壁薄,肝细胞排列成肝索,在中央静脉周围呈放射状分布,细胞呈多形;Mfn2组肝组织肝索排列紊乱,肝小叶结构欠清晰,中央静脉变小,中央静脉周围肝细胞水样变性(图略)。阴性对照组小鼠肝细胞核呈圆形,核膜清楚,细胞器丰富,可见丰富的糖原颗粒、线粒体以及粗面内质网等细胞器(图略)。Mfn2组小鼠肝细胞线粒体重度肿胀,体积明显增大变圆,基质电子密度变低,呈空泡化(图略)。 讨 论 近年来,国内外多项研究结果已证实,经鼠尾静脉大容量快速注射真核质粒可引起实验小鼠肝脏高度、较长时间的转基因表达[2, 8-10]。我们前期通过流体力学将Mfn2 shRNA质粒载体成功导入活体小鼠肝细胞内,再次证实了该方法是体内基因沉默的有效手段[7]。在该研究基础上,本次实验通过检测Mfn2 mRNA和蛋白质的表达,进一步从分子水平研究肝脏组织Mfn2基因沉默效应,结果在质粒载体转染24h,肝脏组织Mfn2的mRNA和蛋白质表达与阴性对照组小鼠差异无统计学意义;在质粒载体转染72、120h,肝脏组织Mfn2的mRNA和蛋白质表达明显下降。该结果提示,采用流体力学技术,由RNAi介导基因沉默研究活体基因功能的最佳时间应该是转染后72~120h,而在转染24h内可能得不到研究该基因的确切数据。同时,本研究结果显示在流体力学注射24h后,小鼠FBS和转氨酶水平升高,而72h后转氨酶水平与正常对照小鼠差异无统计学意义,提示早期流体力学注射对肝脏组织有毒性影响,使肝细胞破裂,转氨酶释放入血浆从而至血清转氨酶升高,而且这种肝细胞毒性作用在注射后72h得到了恢复。并且,这一结果在病理组织学观察中得到证实,即流体力学注射72h后,HK组小鼠肝组织结构完整、清晰,肝小叶结构正常。因此,通过RNAi在体研究肝脏组织基因功能最好选择在转染24h以后,这样既可以避开流体力学技术早期对肝脏的影响,又可以得到最佳目的基因沉默效果。 Mfn2基因参加线粒体膜融合过程在维持线粒体形态和功能中起重要作用[11],其表达与肥胖及胰岛素抵抗密切相关[12-13]。本研究中,我们初步观察了体内Mfn2沉默对小鼠FBS和血清TG的影响,结果显示在注射Mfn2 shRNA质粒24h后,小鼠空腹血糖水平降低,血清TG水平升高,而此时Mfn2分子表达无明显改变;本研究结果还显示,在注射阴性对照质粒和Mfn2 shRNA质粒24h后,小鼠肝细胞功能均明显受损,Mfn2组损害更加严重。线粒体是维持细胞代谢的重要细胞器,其功能受损可引起组织细胞功能损害[14]。因此,推测早期流体力学注射引起肝细胞破坏加上线粒体功能受损,导致肝糖原储备不足和TG输出增多,引起小鼠FBS水平降低和血清TG升高。在注射Mfn2 shRNA质粒72、120h后,小鼠FBS水平升高明显,血清TG同时升高,但差异无统计学意义(预实验结果在120h有统计学意义[7]),此时Mfn2分子表达明显下降;以及此时HK和Mfn2组小鼠肝功能均已恢复正常,但在形态学上,Mfn2组小鼠肝细胞索排列紊乱,肝小叶结构欠清晰,超微结构显示肝细胞线粒体重度肿胀。综合上述结果,我们认为早期肝细胞损害恢复后,Mfn2受抑制引起肝细胞结构和代谢功能损害,导致葡萄糖和脂肪酸代谢通路受损,使小鼠FBS水平升高及血清TG升高。 同时,NC与注射24、72、120h HK组间FBS和血清TG水平差异均无统计学意义,提示流体力学转染方法和阴性对照质粒对小鼠葡萄糖及脂肪代谢无影响,亦说明该方法及所用质粒载体对体内基因功能研究影响不大。 综上所述,流体力学技术是研究体内基因功能有效的RNAi方法,应用该方法将shRNA质粒载体进行转染研究,对应基因功能检测最好时机应选择在转染24h后;Mfn2表达下降与葡萄糖和脂肪代谢密切相关。 参 考 文 献 [1]Sebesty閚 MG, Budker VG, Budker T, et al. Mechanism of plasmid delivery by hydrodynamic tail vein injection. I. Hepatocyte uptake of various molecules. J Gene Med, 2006, 8: 852-873. [2]Lewis DL, Wolff JA. Systemic siRNA delivery via hydrodynamic intravascular injection. Adv Drug Deliv Rev, 2007, 59: 115-123. [3]Bach D, Naon D, Pich S, et al. Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes, 2005, 54: 2685-2693. [4]Gastaldi G, Russell A, Golay A, et al. Upregulation of peroxisome proliferator-activated receptor gamma coactivator gene (PGC1A) during weight loss is related to insulin sensitivity but not to energy expenditure. Diabetologia, 2007, 50: 2348-2355. [5]Soriano FX, Liesa M, Bach D, et al. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes, 2006, 55: 1783-1791. [6]Hern醤dez-Alvarez MI, Thabit H, Burns N, et al. Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1{alpha}/Mitofusin-2 regulatory pathway in response to physical activity. Diabetes Care, 2010, 33: 645-651. [7]Chen XL, Xu YC, Cai XL, et al. Construction of the Mfn2 shRNA and study of systemic shRNA delivery via hydrodynamic intravascular injection. Shengwu Yixue Gongcheng Yanjiu, 2009, 28: 112-115. (in Chinese) 陈小琳,徐焱成,蔡小莉,等.Mfn2基因shRNA质粒的构建及其流体力学转染技术的实验研究.生物医学工程研究,2009,28:112-115. [8]Budker VG, Subbotin VM, Budker T, et al. Mechanism of plasmid delivery by hydrodynamic tail vein injection. II. Morphological studies. J Gene Med, 2006, 8: 874-888. [9]Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med, 2003, 9: 347-351. [10]Liu LM, Luo J, Zhang JX, et al. Distribution of naked green fluorescent protein-expressed plasmid in target organ transfected by intravenous hydrodynamics-based injection in mice. Zhongguo Zuzhi Gongcheng Yanjiu Yu Linchuang Kangfu, 2007, 11: 4558-4561. (in Chinese) 刘亮明,罗杰,张吉翔,等.鼠尾静脉流体力学转染技术对绿色荧光蛋白表达质粒器官靶向分布的影响.中国组织工程研究与临床康复,2007,11:4558-4561. [11]Bach D, Pich S, Soriano FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem, 2003, 278: 17190-17197. [12]Qu DM, Song GY, Gao Y, et al. Expression pattern of PGC-1α and Mfn2 in insulin resistance state and after recovery in rat. Jichu Yixue Yu Linchuang, 2008, 28: 133-137. (in Chinese) 曲东明,宋光耀,高宇,等.胰岛素抵抗大鼠及恢复状态下PGC-1α和Mfn2表达的变化.基础医学与临床,2008,28:133-137. [13]Zorzano A, Liesa M, Palac韓 M. Mitochondrial dynamics as a bridge between mitochondrial dysfunction and insulin resistance. Arch Physiol Biochem, 2009, 115: 1-12. [14]Toledo FG, Menshikova EV, Azuma K, et al. Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content. Diabetes, 2008, 57: 987-994. (收稿日期:2010-04-07) (本文编辑:黄晨) |