【摘要】 目的 探索人骨髓来源多能成体祖细胞(hMAPCs)在与人肝细胞系L02在体外共培养条件下诱导分化为肝细胞的可行性,为其在组织工程学研究和临床医学中的广泛应用奠定基础。 方法 (1) 取健康成人志愿者适量骨髓采用CD45、糖化蛋白A(GlyA)免疫微磁珠负分选,纯化培养CD45-、GlyA-hMAPCs。(2)间接共培养:将分别接种于盖玻片上的传代hMAPCs和人肝细胞系L02(密度均为1×105/ml)按照各50%比例共置于直径10cm培养皿中,培养液共通,实现间接共培养。分别于第1、3、5、7天免疫细胞化学鉴定hMAPCs的Alb、AFP、细胞角蛋白18(CK18)、细胞角蛋白19(CK19)等肝细胞特征性表型表达变化情况,并设阳性对照(单独培养的L02细胞)和阴性对照(单独培养未经诱导的hMAPCs),计数阳性细胞比率。(3)直接共培养:将CFSE荧光(绿色)标记的hMAPCs与L02(密度均为1×104/ml)按照各50%比例混合后接种于激光共聚焦显微镜检查专用培养皿内,实现直接共培养。5d后用SABC-Cy3免疫荧光(红色)双标后在激光共聚焦显微镜下分别观察hMAPCs表达Alb、AFP、CK18的情况。同样设阳性对照(单独培养的CFSE标记L02细胞)和阴性对照(单独培养的CFSE标记MAPCs)。镜下表达黄色荧光的细胞即是向肝细胞分化的MAPCs,为阳性细胞;单纯表达绿色荧光的细胞为未分化的MAPCs;单纯表达红色荧光的细胞为L02细胞。 结果 (1)间接共培养结果:AFP作为不成熟肝细胞的表型标志,在间接共培养第1天表现为强阳性表达,随后逐渐减弱,至第7天,AFP的阳性表达已经很少。而Alb在第1天有可疑阳性表达,第3天,Alb即出现较强的阳性表达,第5天,Alb的阳性表达就达到高峰,第7天,密集生长的细胞仍广泛的阳性表达Alb。第1、3天检测CK18均为阴性,至第5天CK18开始出现阳性表达,第7天CK18阳性表达较前增强。CK19在各时间点均为阴性着色。阳性对照细胞Alb及CK18有较强的阳性表达,AFP弱阳性表达,CK19阴性表达。阴性对照细胞均为阴性表达。(2)直接共培养结果:Alb和CK18检测时,较多细胞质内出现黄色荧光表达,而AFP阳性荧光表达则仅出现在极个别细胞质内,该结果与阳性对照细胞荧光表达类似,而阴性对照细胞未见有阳性荧光表达。 结论 (1)与人肝细胞系L02间接共培养能够诱导人骨髓来源的MAPCs向成熟肝样细胞定向分化。(2)与人肝细胞系L02直接共培养能够诱导人骨髓来源的MAPCs向成熟肝样细胞定向分化,且时间有提前趋势。 【关键词】 肝细胞; 共同培养; 细胞分化; 显微镜检查,共焦; 人骨髓来源多能成体祖细胞
Human bone marrow derived multipotent adult progenitor cells differentiating into hepatocyte-like cells after being induced by co-culturing with human hepatocyte line L02 MU Ning*, WANG Ming-yuan, LIN Yu-dong, GAO Yi. *Department of General Surgery, 95th Clinical Department, PLA Fuzhou General Hospital, Fuzhou 351100, China 【Abstract】 Objectives To investigate the possibility of marrow derived multipotent adult progenitor cells (MAPCs) differentiating into hepatocytes by co-culturing with human hepatocyte line L02, and to evaluate the potential use of MAPCs in tissue-engineering either experimentally or clinically. Methods (1) Co-culturing without cell-to-cell contact: MAPCs and L02 hepatocytes were spread on coverslips separately (both with a cell density of 1×105/ml), and then they were put in a culture dish (10 cm). The expressions of Alb, AFP, CK18, and CK19 in MAPCs were detected by immunocytochemistry at different time points. A seperate culture of L02 hepatocytes served as a positive control and a separate culture of MAPCs served as a negative control. (2) Co-culturing with cell-to-cell contact: MAPCs labeled with CFSE were mixed with L02 hepatocytes (both with a cell density of 1×104/ml), and then the mixed cells were seeded on specific dishes for detection by laser scanning confocal microscope (LSCM). Five days later, the cells were double-stained with SABC-Cy3. The expressions of Alb, AFP, CK18 in MAPCs were observed under LSCM. Similarly, seperately cultured L02 hepatocytes served as a positive control and separately cultured MAPCs served as a negative control. Results (1) Results of co-culturing without cell-to-cell contact: On the first day, the MAPCs expressed a high level of AFP. Then AFP expression tapered daily and there was hardly any expression of AFP on day 7. The expression of Alb was very weak on day 1, but increased significantly by day 3, reached its peak on day 5, and still maintained a high level on day 7. The initial expression of CK18 appeared on day 5 and reached a higher level on day 7. The expression of CK19 was always negative. The positive control cells had a high expression of Alb and CK18, while there was a weak expression of AFP and a negative expression of CK19. The negative control cells had no expressions for the four markers. (2) Results of co-culturing with cell-to-cell contact: On day 5, there were three colors of fluorescence under LSCM: yellow cells were MAPCs differentiating into hepatocytes; green cells were undifferentiated MAPCs; red cells were L02 hepatocytes. The result showed that Alb and CK18 were expressed in many cells and AFP appeared in only a few cells. Conclusion Human MAPCs can be induced to differentiate into mature hepatocyte-like cells by co-culturing with L02 hepatocytes, either with or without cell-to-cell contact, but the former way may be more effective. 【Key words】 Hepatocytes; Co-culture; Cell differentiation; Microscopy, confocal; Human bone marrow derived multipotent adult progenitor cells 骨髓来源多能成体祖细胞(bone marrow derived multipotent adult progenitor cells, MAPCs)具有向肝细胞分化潜能[1],由于其取材方便,可以来自患者自身,无排斥反应,具有重要的临床应用价值。目前诱导MAPCs向肝细胞方向定向分化的方法常见有应用细胞因子、病理血清等[2-4],但应用上述方法诱导干细胞分化出较成熟肝细胞表型特征所需周期较长,很难满足杂交型生物人工肝短期内需要大量具有特异性功能的肝细胞的要求,且由于所需细胞因子的成本较高,也限制了这种诱导方法的应用。共培养是另一种诱导干细胞定向分化的方法,成本低廉。虽然研究较少且机制仍不明确,但有研究显示与肝细胞共培养的胚胎干细胞2d就分化具有非成熟肝细胞的表型特征,且诱导分化的效能高于细胞因子诱导15d的结果[5]。同时由于共培养直接接触的细胞间可能互相提供支持环境,从而更有利于细胞的增殖[6]。因此,利用共培养可能以较低成本在短时间内诱导干细胞分化为较为成熟的肝细胞,且达到大量扩增的目的,从而满足杂交型生物人工肝的需求。基于上述认识,本实验采用与肝细胞系L02共培养的方法探讨hMAPCs向肝细胞定向分化的能力,试图为杂交型生物人工肝及肝细胞移植等找到新的种子细胞来源。 材料与方法 1.hMAPCs的获取、培养:按照文献[7]方法抽取健康成人骨髓,常规密度梯度离心加贴壁培养获得骨髓干细胞,然后用CD45、糖化蛋白A(GlyA)微型免疫磁珠(购自德国Miltenyi Biotec公司)双阴性选择筛选骨髓干细胞,获取hMAPCs,用自制培养基培养(低糖DMEM、MCDB-201、胰岛素、转铁蛋白、牛血清白蛋白、地塞米松、硒仕钠、抗坏血酸2-磷酸盐、L-谷氨酰胺、亚油酸表皮生长因子、血小板生长因子、白血病抑制因子均购自美国Sigma公司,胎牛血清购自杭州四季青公司)。 2.L02人肝细胞株(人胎肝细胞株,购自上海细胞生物研究所,RPMI 1640+胎牛血清培养)与hMAPCs间接共培养诱导其向肝样细胞分化:(1)将分别接种于盖玻片上的传代hMAPCs和人肝细胞系L02(密度均为1×105/ml)按照各50%比例共置于直径10cm培养皿中,培养液共通(自制培养基,5%胎牛血清,不加白血病抑制因子),实现间接共培养。(2)形态学观察:细胞培养与诱导过程中,用倒置相差显微镜观察细胞生长形态。(3)免疫细胞化学染色:分别于间接共培养第1、3、5、7天免疫细胞化学鉴定hMAPCs的Alb、AFP、细胞角蛋白18(CK18)、细胞角蛋白19(CK19)等肝细胞特征性表型表达变化情况,并设阳性对照(单独培养的L02细胞)和阴性对照(单独培养未经诱导的hMAPCs),计数阳性细胞比率,起始共培养时间计为第0天。第一抗体为羊抗人Alb(1∶400),鼠抗人AFP(1∶320)、CK18(1∶400)、CK19(1∶400),设阳性、阴性、替代对照。其中AFP、CK18、CK19用ABC法,DAB显色,细胞质内出现棕黄色颗粒反应为阳性;Alb用SP法,3,氨基 -9-乙基卡巴唑(AEC)显色,细胞质内出现棕红色颗粒反应为阳性(羊抗人Alb,鼠抗人AFP,鼠抗人CK18、CK19均购自美国Sigma公司,过氧化酶标记的链霉卵白素streptavidin/peroxidase,SP免疫组织化学试剂盒、抗鼠免疫组织化学广谱试剂盒、DAB显色试剂盒、AEC显色试剂盒均购自福州迈新生物技术开发公司)。操作均按照说明书进行。我们参照文献[8]半量化免疫细胞:每个结果取5个有代表性的高倍镜视野(×200),计数阳性染色细胞所占百分比,取其平均值,按每20%为一个“+”。 3.人肝细胞系L02与hMAPCs直接共培养诱导其向肝样细胞分化:(1)按照说明书用配制好的羧基荧光素二醋酸盐琥珀酰亚胺酯(5,6-carboxyfluorescein diacetate succinimidyl ester CFSE,绿色)(购自美国Molecular Probes公司) 荧光染剂标记hMAPCs后与L02细胞(密度均为1×104/ml)按照各50%比例混合后接种于激光共聚焦显微镜扫描专用培养皿内,实现直接共培养。(2)免疫荧光染色:直接共培养第5天用SABC-花箐素3,SABC-Cy3(红色荧光)(抗小鼠 IgG SABC-Cy3试剂盒,抗山羊IgG SABC-Cy3试剂盒均购自武汉博士德公司)间接免疫荧光进行双标免疫荧光染色。第一抗体为羊抗人Alb(1∶400),鼠抗人AFP(1∶320)、CK18(1∶400),设阳性、阴性、空白对照。阳性对照为单独培养的CFSE标记L02细胞,阴性对照为单独培养未诱导分化的CFSE标记hMAPCs。操作均按照说明书进行。在激光共聚焦显微镜下观察hMAPCs表达Alb、AFP、CK18的情况。镜下单纯表达绿色荧光的细胞为未分化的hMAPCs;表达黄色荧光的细胞既是向肝细胞分化的hMAPCs,为阳性细胞;单纯表达红色荧光的细胞为L02细胞。 结 果 1. hMAPC共培养诱导过程的形态学观察:hMAPCs单独培养时大多呈现内皮细胞样的梭型或成纤维细胞样长条形。在两种共培养体系中,梭形或成纤维细胞样hMAPC均随着诱导时间的延长,变成纺锤、不规则圆形或多角形,与L02肝细胞形态相似,见图1。 2. 间接共培养免疫细胞化学染色结果:分别在诱导第1、3、5、7天对hMAPCs行免疫细胞化学染色,L02细胞为阳性对照,未诱导hMAPCs细胞为阴性对照,结果见表1,图2。 3. 直接共培养免疫荧光染色激光共聚焦扫描结果:Alb和CK18细胞质内出现较多黄色荧光表达,而AFP则仅在极个别细胞内阳性表达,见图3。 讨 论 1999年Petersen等[9]第一次证明骨髓来源的细胞可分化为肝细胞以来,从骨髓源中寻找具有向肝细胞方向分化能力的研究成为近年来的研究热点。目前,在骨髓中已经发现多种细胞亚群具有向肝细胞分化的潜能[10],我们从正常成年人骨髓中通过梯度离心及免疫磁珠筛选分离纯化出作为骨髓干细胞一个亚群的hMAPCs (CD45-、glycophorin-A-),体外培养获得了较为活跃的增殖特性。通过特异性表型鉴定证实其具有间充质干细胞特征,且纯度较高[7]。 目前诱导干细胞向肝细胞定向分化的方法以细胞因子诱导多见[11,12],而Jang等[13]将造血干细胞与损伤肝脏在体外间接共培养,即利用半透膜将两者隔开,结果显示造血干细胞横向分化为肝样细胞,证明这种病理微环境对于诱导干细胞向肝样细胞横向分化起决定作用,而不是细胞融合的作用。然而正常肝脏微环境是否也具有这种诱导作用呢?Yamazaki等[14]等将鼠骨髓细胞与肝非实质细胞共培养,检测到较强表达的肝细胞特异性基因。Lange等[8]利用原代大鼠肝细胞与间充质干细胞共培养,诱导其表达出成熟肝细胞表型的基因,并阐明其机制在于模拟了器官特异性的微环境。基于上述认识,本实验探讨了hMAPCs与正常人肝细胞系L02在间接和直接两种共培养模式下向肝样细胞分化的能力。人肝细胞系L02组织起源于正常成人肝细胞,是一种高分化的人肝细胞系。我们曾经对比了包括L02在内的9种人肝细胞系,发现L02细胞系的各项生物功能最好[15]。 在间接共培养模式下,hMAPCs与L02细胞分别培养,培养液共通,结果显示:AFP作为不成熟肝细胞的表型标志,在间接共培养第1天表现为强阳性表达,Alb可疑阳性表达,CK18为阴性;而间接共培养第3天,作为成熟肝细胞特征的Alb就出现较强的阳性表达,相反AFP的阳性表达减少;第5天,Alb的阳性表达达到高峰,AFP阳性表达继续减少,而此时另一种成熟肝细胞特征表型CK18出现阳性表达;间接共培养第7天,密集生长的细胞广泛的阳性表达Alb,AFP的阳性表达已经很少,CK18阳性表达增多;成熟胆管细胞特征表型CK19在各时间点均为阴性着色。说明在此模式下,7d可以诱导hMAPCs分化为较为成熟的肝样细胞。对比本课题组前期应用细胞因子肝细胞生长因子、成纤维细胞生长因子诱导分化的结果[16],诱导第7天Alb出现的阳性表达明显弱于间接共培养诱导第3天的阳性表达效率,细胞因子诱导21d Alb的阳性表达才达到高峰,而间接共培养第5天即达高峰,相对于前期实验的诱导方法,在诱导效率及时间上,共培养表现出较为明显的优势。对比何念海等[4]运用细胞因子进行诱导的相关研究也同样可以看出类似的趋势。同时在机制上我们的间接共培养研究结果也支持了微环境诱导干细胞横向分化机制的理论。 在间接共培养取得阳性结果的基础上,我们探讨了直接共培养诱导分化的方法,结果Alb和CK18细胞质内出现较多黄色荧光表达,而AFP则仅在极个别细胞内阳性表达。初步说明直接共培养5d,hMAPCs被诱导分化为较为成熟的肝样细胞,较间接共培养诱导分化的时间似乎更为提前,这就提示,直接共培养时,除了具备器官特异性的促分化微环境外,细胞直接接触时所建立细胞间通道的直接信号交流也可能对诱导特异性分化产生作用,同时直接接触局部可能存在较高的诱导分化细胞因子浓度,可能也是直接共培养诱导分化时间提前的原因之一。 根据Mizuguchi等[6]将骨髓来源基质细胞和肝细胞共培养,发现肝细胞和基质细胞数均较单独培养明显增加,且肝细胞功能较单独培养增强。因此,我们可以设想在体外培养扩增hMAPCs后与人肝细胞系或原代人肝细胞共培养,诱导其分化为肝细胞,同时达到大规模扩增的目的,有望在短时间内满足杂交型生物人工肝治疗数量级的需求和维持较高的肝特异性功能。 参 考 文 献 [1]Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418: 41-49. [2]Lee KD, Kuo TK, Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 2004, 40: 1275-1284. [3]Shi XL, Qiu YD, Wu XY, et al. In vitro differentiation of mouse bone marrow mononuclear cells into hepatocyte-like cells. Hepatol Res, 2005, 31: 223-231. [4]He NH, Zhao WL, Wang YM. Molecular biological identification of hepatocyte-like cells derived from human fetal marrow mesenchymal stem cells. Shijie Huaren Xiaohua Zazhi, 2004, 12: 1844-1848. 何念海,赵文利,王宇明.人胎儿骨髓间充质干细胞来源的类肝细胞的分子生物学鉴定.世界华人消化杂志,2004,12:1844-1848. [5]Jiang Y, Henderson D, Blackstad M, et al. Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci U S A, 2003, 100(Suppl 1): 11854-11860. [6]Mizuguchi T, Hui T, Palm K, et al. Enhanced proliferation and differentiation of rat hepatocytes cultured with bone marrow stromal cells. J Cell Physiol, 2001, 189: 106-119. [7]Mu N, Gao Y, Tang LJ. In vitro culture of multipotent adult progenitor cells purified from human bone marrow by magnetic-activated cell sorting. Diyi Junyi Daxue Xuebao, 2005, 25: 535-537. 慕宁,高毅,唐力军.双阴性选择法纯化培养人骨髓多能成体祖细胞.第一军医大学学报,2005,25:535-537. [8]Lange C, Bassler P, Lioznov MV, et al. Hepatocytic gene expression in cultured rat mesenchymal stem cells. Transplant Proc, 2005, 37: 276-279. [9]Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science, 1999, 284: 1168-1170. [10]Yamamoto N, Terai S, Ohata S, et al. A subpopulation of bone marrow cells depleted by a novel antibody, anti-Liv8, is useful for cell therapy to repair damaged liver. Biochem Biophys Res Commun, 2004, 313: 1110-1118. [11]Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002, 109: 317-346. [12]Okumoto K, Saito T, Hattori E, et al. Differentiation of bone marrow cells into cells that express liver-specific genes in vitro: implication of the Notch signals in differentiation. Biochem Biophys Res Commun, 2003, 304: 691-695. [13]Jang YY, Collector MI, Baylin SB, et al. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol, 2004, 6: 532-539. [14]Yamazaki S, Miki K, Hasegawa K, et al. Sera from liver failure patients and a demethylating agent stimulate transdifferentiation of murine bone marrow cells into hepatocytes in coculture with nonparenchymal liver cells. J Hepatol, 2003, 39: 17-23. [15]Xue GZ, Liu BY, Chen LB, et al. Biofunctional screening of human hepatocytes and its application in bioartificial liver. Waike Lilun Yu Shijian, 2002, 7: 163-165. 薛国柱,刘冰艳,陈芦斌,等.人肝细胞系生物功能筛选测定.外科理论与实践,2002,7:163-165. [16]Tang LJ, Gao Y, Zhang Z, et al. Human bone marrow multipotent adult progenitor cells differentiate into hepatocyte-like cells with hepatocyte growth factor plus fibroblast growth factor-4 in vitro. Zhonghua Ganzangbing Zazhi, 2005, 13: 652-655. 唐力军,高毅,张志,等.肝细胞生长因子联合成纤维细胞生长因子-4诱导人骨髓来源的多能成体祖细胞向肝样细胞分化.中华肝脏病杂志,2005,13:652-655. 《中华肝脏病杂志》版权 |