【摘要】 目的 研究QSG-7701及HepG2细胞支持HBV复制模式的差异及其内在机制。 方法 质粒PUC18-HBV1.2转染QSG-7701与HepG2细胞后定量检测细胞上清液中HBV DNA和HBsAg;采用基因芯片技术比较分析二者基因表达差异并用实时定量PCR验证。 结果 HepG2细胞在转染后6d内培养上清液可检出HBV DNA及HBsAg,QSG-7701细胞转染后2周内均可检出HBV DNA及HBsAg,且HBV DNA在10d内保持相对稳定的高水平复制(1×107~3×107拷贝/ml);基因芯片检测结果示QSG-7701细胞中与HBV生活周期相关的因子如HLF、RXRα、IL-6高表达,而HBxIP、SPIK1为低表达,MMP3不表达。 结论 QSG-7701支持高水平的HBV复制,并可维持cccDNA池的相对稳定,基因差异表达可能为二者支持不同HBV复制模式提供解释。 【关键词】 肝炎病毒, 乙型; 基因芯片; 差异表达; QSG-7701细胞; HepG2细胞 Comparisons of the characteristics and mechanisms of HBV replication in QSG-7701 and HepG2 cell lines PAN Xiao-ben, ZHU Lin, GAO Yan, CHEN Hong-song, WEI Lai. People’ Hospital, Hepatology Institute, Peking University, Beijing 100044, China 【Abstract】 Objective To gain some insights into the critical events relating to HBV transcriptional regulation by comparing HBV replicative characteristics in different cell lines. Methods Hepatic cell lines QSG-7701 and HepG2 were transfected with plasmid PUC18-HBV 1.2 by standard calcium phosphate precipitation method, and 1.0μg pSEAP2-control vector was included in the transfection procedures to serve as an internal control monitoring the transfection efficiency. Hepatitis B surface antigen (HBsAg) in the medium was detected by ELISA method and HBV DNA was quantitated using fluorescent quantitative PCR. The intracellular HBsAg and HBcAg were detected with immunofluorescent staining. The gene expression profiles of QSG-7701 and HepG2 were compared using oligonucleotide microarray; partial differentially expressed genes were verified with quantitative RT-PCR. Results In the medium of the cultured HepG2 cells, HBsAg and HBV DNA could be detected 6 days after the transfection, whereas in QSG-7701 cells, the HBsAg and HBV DNA could be detected for 2 weeks. The HBV DNA in the culture medium of QSG-7701 was about 50 times more than that of the HepG2 cells which were kept in 1×107 copies/ml-3×107 copies/ml for 0-10 days after the transfection. On the 4th day after the transfection, 20%-30% of the QSG-7701 cells were positive with HBsAg and HBcAg immunofluorescent staining. The gene microarray analysis showed that most transcription factors involved with HBV life cycle in QSG-7701 and HepG2 cells had similar levels, whereas some factors involved with HBV transcriptional regulation and core particle disassembly, such as interleukin-6 (R = 5.1340), retinoid X receptor, alpha (R = 5.1268), hepatic leukemia factor (R = 3.2538), serine protease PRRS23 (R = 2.8356), hepatitis B virus x interacting protein (R = 0.4939), serine protease inhibitor Kazal type 1 (R = 0.0740) and matrix metalloproteinase 3 (negative in QSG-7701) were all differentially expressed by HepG2 cells. Conclusion Different than HepG2 cells, the QSG-7701 cells could support a high level and relatively stable HBV replication after HBV DNA transient transfection. The HBV core particles were probably recycled in the QSG-7701 cells. The differential gene expressions between QSG-7701 and HepG2 might explain the mechanism of the different HBV replication patterns. Hepatic cell line QSG-7701 might serve as a useful tool for HBV transcriptional regulation research. 【Key words】 Hepatitis B virus; Oligonucleotide microarray; Differential expression; QSG-7701 cells; HepG2 cells HBV DNA的启动子及增强子与肝细胞富集转录因子的相互作用是精确调控各mRNA转录的关键,这也是HBV嗜肝性的重要原因之一[1,2]。HBV DNA转录对肝细胞内环境的严格依赖也使得只有少数肝(癌)细胞能支持HBV复制[3-5]。我们发现肝细胞系QSG-7701转染HBV DNA后,具有与HepG2细胞不同的HBV复制模式,进而采用全基因芯片对二细胞系进行基因差异表达分析以探讨二者支持不同HBV复制模式的内在机制。 材料与方法 1. 细胞培养及磷酸钙转染:肝细胞系QSG-7701和肝癌细胞系HepG2细胞(上海中国科学院细胞生物研究所)复苏后接种至六孔板,以含10%FBS (中美合资Hyclone公司,中国兰州民生科技公司提供)的DMEM培养基(美国Gibco公司)培养。细胞生长至80%融合后,采用常规磷酸钙沉淀法对每个细胞转染质粒 PUC18-HBV1.2(本所保存)1.0×107μg。同时以分泌碱性磷酸酶的质粒pSEAP 1.0μg为内参照判断转染效率,磷酸甘油休克后换含5% FBS的DMEM培养基4ml维持培养,隔日换液,留取培养上清液4℃保存待检,转染实验重复3次。 2. 培养上清液HBsAg检测:培养上清液中HBsAg和HBeAg采用ELISA试剂盒(荷兰Biomerieux bv公司)检测,检测方法如所附产品说明书进行,最低检测值为0.2U/ml。 3. 培养上清液HBV DNA检测:培养上清液中加入终浓度为10mol/L MgCl2、100μg/ml DNaseⅠ 37℃消化1h后25mmol/L EDTA终止消化反应,冻存以检测HBsAg与HBV DNA。采用荧光定量PCR检测试剂盒(中山大学达安基因公司),Light Cycler Ⅱ全自动荧光定量PCR仪(德国Roche公司)检测,引物序列见表1,各基因的缩写及名称见表2。 4. HBsAg及HBcAg的免疫荧光细胞化学检测:在六孔板内预置盖玻片,转染后2d弃培养基,用PBS轻洗2次后取出盖玻片。冷丙酮4℃固定15min,0.2% TritonX100-PBS透膜10min。加小鼠来源的抗-HBs(1∶16,美国Biodesign公司)及兔来源的抗-HBc(1∶50,美国Signet公司)50μl,置37℃×2h,PBS洗5min×3次;加FITC标记的马抗小鼠IgG(1∶50,美国Vector公司)及TRITC标记的羊抗兔IgG(1∶200,美国Jackson Immunoresearch公司)50μl,PBS洗5min×3次,水溶性封片剂封片。荧光显微镜下(Olympus AX80TF,日本)观察及数码相机(Olympus C50,日本)拍摄图像,Photoshop7.0图像处理软件叠加红绿色荧光图片以定位抗原表达部位。 5. QSG-7701与HepG2细胞的基因差异表达分析:HepG2及QSG-7701细胞培养至完全融合后(细胞数约5.0×106),弃上清液,用PBS洗3次,加入Trizol(美国Invirtogen公司)1.5ml提取总RNA并用Nucleospin RNA Clean-up试剂盒 (德国Macherey-Nagel公司) 纯化,提取的RNA经甲醛凝胶电泳鉴定及紫外分光光度计定量。采用Oligo全基因芯片,其点阵包含人类全基因文库已明确鉴定的21329个基因(http://oligos.qiagen.com/arrays/oligosets_overview.php,德国Qiagen公司)。具体检测操作由北京博奥生物公司完成。 6. 实时定量PCR验证部分差异表达基因:以DNaseⅠ 37℃反应30min(日本TaKaRa公司)去除总RNA中的基因组DNA,酚-氯仿法抽提总RNA溶于适量DEPC水中,取2.0μg总RNA在20μl体系中反转录形成1st-cDNA,取1μl产物为模板扩增,优化PCR体系,确定合适的引物浓度、镁离子浓度和退火温度。以看家基因GADP作为校准基因,采用Lightcycler-faststart DNA master SYBR green I试剂盒(德国Roche公司),以同样的模板和优化后的实验体系采用全自动Light Cycler PCR仪(PTC-225,德国Roche公司)进行实时PCR扩增,重复40个循环,数据分析参照文献[6,7],并电泳检测PCR产物扩增情况。 结 果 据各组第2天培养上清液样本中碱性磷酸酶活性差异5%~10%,可认为转染效率差异无统计学意义,二者培养上清液中HBV DNA及HBsAg结果可以直接比较。培养上清液中的HBsAg检测结果见图1。培养上清液中的HBV DNA检测结果见图2。免疫荧光细胞化学染色结果见图3。HBV生活周期相关基因的差异表达见表2。实时PCR验证结果见图4。 HepG2细胞转染PUC18-HBV1.2后第8天培养上清液中HBV DNA与HBsAg低于可检测水平,表现为典型的瞬时转染的表达特性而未见明显的cccDNA循环所起的作用。据培养上清液中HBsAg,HBV DNA及细胞内HBsAg、HBcAg的检测结果(图1~图3),以及转染后第2和第4天上清液中HBeAg阳性,显示肝细胞系QSG-7701可以支持HBV复制和各病毒蛋白的表达。但明显不同于HepG2细胞的是其上清液中HBV DNA在转染后10d内稳定于1×107~3×107拷贝/ml,且转染后2周内培养上清液中均可检出HBsAg和HBV DNA(图1,2)。根据转染效率推算,每个QSG-7701细胞每日HBV分泌量30~90拷贝,其病毒复制水平约为HepG2细胞的50倍。QSG-7701细胞瞬时转染HBV DNA获得较稳定病毒复制。但其HBsAg的表达则呈现了明显的波动性,第4天达最高值而此后下降,峰值水平亦低于HepG2细胞培养上清液中的表达量;第10天上清液中HBV DNA水平虽仍在107拷贝/ml,但HBsAg已明显为低表达水平。推测该细胞系本身可能支持较低水平的HBsAg表达,第4天HBsAg表达峰的来源为转染的大量质粒模板,而在第10天转染入质粒基本已降解,从而反映其真实的HBV DNA复制水平与HBsAg分泌的比例关系。 讨 论 肝细胞系QSG-7701,可认为其为癌前状态细胞[8],近年在研究中已得到应用[9-11]。我们在实验中使用瞬时转染PUC18-HBV1.2作为细胞的HBV DNA来源,质粒PUC18是一原核克隆载体,其插入HBV的表达取决于HBV自身增强子和启动子与细胞转录因子的相互作用;一般而言,瞬时转染进入细胞的质粒DNA在1周内基本降解,因此其蛋白质表达时间较短。但在完整的HBV生活周期中存在着复制过程中包装好的核心颗粒向细胞核回归的过程,重新释放出HBV DNA以维持cccDNA模板量的稳定。HepG2细胞虽可支持HBV复制,但可能由于丝氨酸蛋白酶抑制剂SPIK1或基质金属蛋白酶3的高表达,存在着核心颗粒入核的障碍从而不能支持cccDNA模板的稳定[12-14]。本研究结果亦证实HepG2细胞支持HBV生活周期的不完整性。一般而言,99%以上分泌的HBsAg是过剩的,并非包装Dane颗粒所必需,并有研究证实S基因的129~620位核苷酸的mRNA模板数量为调节HBV复制的负反馈因素[15]。QSG-7701细胞支持低HBsAg表达显示其2.1kb mRNA转录水平的低下,这种反馈调节机制的削弱可能也正是其HBV高复制的因素之一。 本研究结果显示,相对于整合了HBV DNA的HepG2.2.15细胞上清液中HBV DNA和HBsAg比例关系,QSG-7701细胞支持HBV复制的模式具有明显的“高病毒复制,低HBsAg表达”的特点,其HBV DNA/HBsAg比值约为前者50倍。 QSG-7701和HepG2细胞支持HBV复制模式的不同显然与细胞内环境的差异密切相关,为此我们对二细胞系进行全基因谱差异表达分析,主要关注与HBV生活周期相关的基因的差异表达。基因芯片检测结果显示既往报道与HBV转录有关各肝细胞转录因子在QSG-7701和HepG2细胞中并无差异表达[1, 2],但其他的一些与HBV生活周期相关的因子(表2, 图4)有差异表达。IL-6在QSG-7701细胞中表达水平为HepG2细胞中的5.134倍;已有研究证实IL-6及其受体有助于HBV的体内外感染并可通过核因子-IL-6信号传导通路增强HBV EnhⅠ的活性和HBx蛋白的表达而有助于HBV复制[16,17];HBxIP为HBx的结合蛋白,可抑制HBx蛋白的反式激活作用[18],HBxIP在QSG-7701细胞中的低表达(R=0.4939)显然也有助于HBV的复制。所有上述基因差异表达可能正是QSG-7701支持高水平HBV复制的内在机制。但NR5A1和NR5A2被认为是Cp的有力启动因子[19,20],在HepG2细胞中可以检测到二者低表达,而QSG-7701细胞中基因芯片和实时定量PCR结果均低于检测水平(表2,图4)。其中NR5A2是AFP的转录因子,考虑正常支持HBV复制的成熟肝细胞亦未有AFP的表达,推测NR5A2可能在HBV转录中并非必需,或者其作用可为其他转录因子所代替。 转录因子Sp1为2.1kb mRNA转录的重要转录因子,基因芯片检测结果显示二者Sp1差异小于2倍(R=0.6759),但其在启动子Sp2区域有3个结合位点[2],推测多个结合位点可能会使Sp1低差异表达的效应放大,这可能是HBsAg在QSG-7701中低水平表达的因素之一。 HepG2细胞可以支持HBV DNA的复制但不能为HBV直接感染可能与MMP3及SPIK1的高表达阻断核心颗粒入核有关[12-14]。基因芯片检测结果示QSG-7701细胞的丝氨酸蛋白酶抑制剂SPINK1及SERPINI1分别为HepG2细胞的0.0740和0.1138倍,且丝氨酸蛋白酶PRSS23在QSG-7701中高表达(表2),支持丝氨酸蛋白酶的高活性可能有利于核心颗粒进入细胞核的观点。但我们的2次基因芯片分析结果与实时PCR结果中MMP3在HepG2细胞中为低表达,与既往关于HepG2细胞中MMP3表达的报道不同[14],尚不清楚是否因细胞完全融合后收集样本对MMP3表达有影响;在QSG-7701细胞中MMP3则低于检测水平。QSG-7701中SPIK1及MMP3的低表达有利于核心颗粒回归细胞核可能正是HBV DNA瞬时转染后获得稳定HBV复制的内在机制。此外,我们推测QSG-7701支持高水平的HBV复制,可以提供更多的核心颗粒回归细胞核可能也是维持cccDNA池稳定的因素之一。但在转染10d后HBV DNA水平仍然下降,目前原因不明,可能与高水平的HBV复制激活IFN信号系统而产生抗病毒效应或者导致细胞的凋亡有关,相关研究正在进行中。 核心蛋白的磷酸化过程对于pgRNA的包装及核心颗粒的成熟过程非常重要[21-23],在QSG-7701细胞中的与核心蛋白磷酸化有关的磷酸化酶的表达水平为HepG2细胞的2.55倍(表2),此差异表达对HBV生活周期是否有影响尚待明确。QSG-7701和HepG2细胞有多达1100个差异表达基因,显然可能还存在更多的差异表达与二者支持不同的HBV复制特性有关。 参 考 文 献 [1]Kramvis A, Kew MC. The core promoter of hepatitis B virus. J Viral Hepat, 1999, 6: 415-427. [2]Moolla N, Kew M, Arbuthnot P. Regulatory elements of hepatitis B virus transcription. J Viral Hepat, 2002, 9: 323-331. [3]Sureau C, Romet-Lemonne JL, Mullins JI, et al. Production of hepatitis B virus by a differentiated human hepatoma cell line after transfection with cloned circular HBV DNA. Cell, 1986, 47: 37-47. [4]Chang CM, Jeng KS, Hu CP, et al. Production of hepatitis B virus in vitro by transient expression of cloned HBV DNA in a hepatoma cell line. EMBO J, 1987, 6: 675-680. [5]zu Putlitz J, Roberts EA, Wieland S, et al. Hepatitis B virus replication and viral antigen synthesis in hepatocyte lines derived from normal human liver. Virus Res, 1997, 52: 177-182. [6]Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 2001, 29: e45. [7]Tichopad A, Dilger M, Schwarz G, et al. Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res, 2003, 31: e122. [8]Zhu DH, Wang JB. Cultivating of QSG-7701 cell line and comparing it with liver cancer cell. Zhongliu Fangzhi Yanjiu, 1979, 5: 7-9. 朱德厚,王金兵.人体肝癌宿主肝细胞系(QSG-7701)的培养及其与肝癌细胞的比较.肿瘤防治研究,1979,5:7-9. [9]Huang R, Xing Z, Luan Z, et al. A specific splicing variant of SVH, a novel human armadillo repeat protein, is up-regulated in hepatocellular carcinomas. Cancer Res, 2003, 63: 3775-3782. [10]Feng DY, Sun Y, Cheng RX, et al. Effect of hepatitis C virus nonstructural protein NS3 on proliferation and MAPK phosphorylation of normal hepatocyte line. World J Gastroenterol, 2005, 11: 2157-2161. [11]Li B, Feng DY, Cheng RX, et al. The effects of hepatitis C virus core protein on biological behaviors of human hepatocytes. Zhonghua Yixue Zazhi, 2005, 85: 1243-1248. 李波,冯德云,程瑞雪,等.丙型肝炎病毒核心蛋白对人源肝细胞生物学行为的影响.中华医学杂志,2005,85:1243-1248. [12]Paran N, Geiger B, Shaul Y. HBV infection of cell culture: evidence for multivalent and cooperative attachment. EMBO J, 2001, 20: 4443-4453. [13]Lu X, Block T. Study of the early steps of the hepatitis B virus life cycle. Int J Med Sci, 2004, 1: 21-33. [14]Yeh CT, Lai HY, Chu SP, et al. Anti-sense expression of a metallopeptidase gene enhances nuclear entry of HBV-DNA.Tseng IC. Biochem Biophys Res Commun, 2004, 323: 32-37. [15]Liou J, Jeng K, Lin C, et al. A novel regulator inhibits HBV gene expression. J Biomed Sci, 1998, 5: 343-354. [16]Galun E, Nahor O, Eid A, et al. Human interleukin-6 facilitates hepatitis B virus infection in vitro and in vivo. Virology, 2000, 270: 299-309. [17]Ohno H, Kaneko S, Kobayashi K, et al. Human hepatitis B virus enhancer 1 is responsive to human interleukin-6. J Med Virol, 1997, 52: 413-418. [18]Melegari M, Scaglioni PP, Wands JR. Cloning and characterization of a novel hepatitis B virus x binding protein that inhibits viral replication. J Virol, 1998, 72: 1737-1743. [19]Ishida H, Ueda K, Ohkawa K, et al. Identification of multiple transcription factors, HLF, FTF, and E4BP4, controlling hepatitis B virus enhancer II. J Virol, 2000, 74: 1241-1251. [20]Gilbert S, Galarneau L, Lamontagne A, et al. The hepatitis B virus core promoter is strongly activated by the liver nuclear receptor fetoprotein transcription factor or by ectopically expressed steroidogenic factor 1. J Virol, 2000, 74: 5032-5039. [21]Kann M, Thomssen R, Kochel HG, et al. Characterization of the endogenous protein kinase activity of the hepatitis B virus. Arch Virol Suppl, 1993, 8: 53-62. [22]Lan YT, Li J, Liao W, et al. Roles of the three major phosphorylation sites of hepatitis B virus core protein in viral replication. Virology, 1999, 259: 342-348. [23]Perlman DH, Berg EA, O'connor PB, et al. Reverse transcription-associated dephosphorylation of hepadnavirus nucleocapsids. Proc Natl Acad Sci U S A, 2005, 102: 9020-9025. 《中华肝脏病杂志》版权 |