【摘要】目的 探讨血红素加氧酶-1(HO-1)在非酒精性脂肪性肝炎进展中的作用及其机制。 方法 选用健康雄性C57BL/6J小鼠,采用胆碱-蛋氨酸缺乏饮食(MCD)4周建立小鼠非酒精性脂肪性肝炎模型,以胆碱-蛋氨酸充足饮食设立对照组,并以MCD加HO-1激动剂血晶素或抑制剂锌原卟啉进行干预实验。小鼠血清ALT和AST采用全自动生化仪酶法测定。HE染色观察肝脂肪变、炎症活动及纤维化程度;逆转录聚合酶链反应和Western blot检测HO-1、肿瘤坏死因子(TNF)α和白细胞介素(IL)-6 mRNA及其蛋白的表达。 结果 MCD喂养小鼠血清ALT及AST明显异常,出现中~重度肝细胞脂肪变性,伴有点状和灶状肝细胞坏死、炎性细胞浸润、轻度汇管区纤维组织增生及窦周纤维化;HO-1、TNFα和IL-6 mRNA及其蛋白的表达较对照组显著增强,相对表达量分别为1.13±0.11、1.74±0.05,0.20±0.01、1.92±0.10,0.58±0.02、2.06±0.05对比0.43±0.02、0.75±0.05,0.08±0.00、0.59±0.02,0.22±0.01、0.91±0.02(P<0.01);应用血晶素小鼠随肝脏HO-1 mRNA及其蛋白表达的上调及TNFα和IL-6 mRNA及其蛋白表达的下调(P<0.01),肝脂肪变及炎症活动度均显著减轻;而应用锌原卟啉小鼠,肝脏HO-1 mRNA及蛋白表达明显受抑制,TNFα和IL-6 mRNA及蛋白表达则明显增强(P<0.01),肝脂肪变及炎症亦随之显著加重。 结论 抗氧化基因HO-1靶向性激活可阻止非酒精性脂肪性肝炎的发生及进展。 【关键词】肝炎,脂肪性; 血红素加氧酶-1; 肿瘤坏死因子α; 白细胞介素-6 The role of heme oxygeanse-1 in non-alcoholic steatohepatitis WANG Rong-qi, NAN Yue-min, HAN Fang, ZHAO Su-xian, FU Na, WU Wen-juan. Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, China Corresponding author: NAN Yue-min, Email: nanyuemin@ 163.com 【Abstract】 Objective To investigate the potential role of heme oxygeanse-1 on preventing non-alcoholic steatohepatitis (NASH) in mice. Methods Experimental models of NASH were established by feeding male C57BL/6J mice with choline-methionine deficient diet (MCD) for four weeks. Control animals were fed with choline-methionine supplemented diet. The treatment groups were fed with MCD diet combined with HO-1 inducer hemin or inhibitor zinc protoporphyrin IX (ZnPP-IX). Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were tested by enzymic method with automatic biochemistry analyzer. The degree of hepatic steatosis, inflammation and fibrosis were examined under HE staining. The hepatic mRNA and protein expressions of HO-1, TNFα and IL-6 were analyzed by RT-PCR and Western blot respectively. Results MCD fed mice showed increased serum ALT and AST levels and moderate to severe hepatic steatosis with inflammatory infiltration, hepatic spot or focal necrosis, light portal and sinus hepaticus fibrosis in the liver sections, which associated with enhanced expression of HO-1, TNFα and IL-6 mRNA and protein (1.13±0.11, 1.74±0.05; 0.20±0.01, 1.92±0.10; 0.58±0.02, 2.06±0.05 vs 0.43±0.02, 0.75±0.05; 0.08±0.00, 0.59±0.02; 0.22±0.01, 0.91±0.02). Administration of hemin significantly decreased serum ALT and AST levels and attenuated hepatic steatosis and necroinflammation which associated with up-regulation of antioxidative gene HO-1 and down-regulation of pro-inflammatory cytokines TNFα and IL-6 (P < 0.01). A contrary effect on serum aminotransferase levels and liver histopathology was observed in mice injected with ZnPP-IX (P < 0.01). The effect was associated with suppressed HO-1 expression and increased TNFα and IL-6 expression. Conclusions The data provided a biochemical, morphological and molecular biological evidence for the protective role of HO-1 in ameliorating hepatic steatosis, necroinflammation in experimental nutritional steatohepatitis. 【Key words】Steatohepatitis; Heme oxygeanse-1; Tumor necrosis factor alpha; Interleukin-6 血红素加氧酶-1(heme oxygeanse-1,HO-1)是机体的一种自身保护性基因,可被多种氧化应激因素所激活,是组织细胞对抗氧化应激损伤的重要组成部分。非酒精性脂肪性肝炎(NASH)的发生、发展与氧化应激密切相关,大量的活性氧(reactive oxygen specimens,ROS)及自由基在肝脏蓄积导致肝损伤,同时促进炎性因子,如肿瘤坏死因子α(TNFα)、白细胞介素-6(IL-6)等的产生,引起肝细胞变性、坏死性炎症和肝纤维化[1]。关于HO-1和TNFα、IL-6在NASH中的相互关系及其对NASH进展的作用及其机制尚不清楚。我们采用胆碱-蛋氨酸缺乏(methionine and choline deficient,MCD)饮食建立小鼠NASH模型,以HO-1诱导剂和抑制剂分别进行干预,探讨HO-1对TNFα和IL-6的调节作用及其对NASH进展的影响,旨在为NASH治疗策略提供依据。 材料与方法 1. 试剂:MCD及胆碱-蛋氨酸充足的饲料均购于美国ICN生物医学化学药品公司;血晶素(hemin)和锌原卟啉(zinc protoporphyrin-IX,ZnPP-IX)购自美国Sigma公司。总RNA提取试剂盒、RNA酶抑制剂、AMV反转录酶、Taq DNA聚合酶购于美国Promega公司。引物序列依据GenBank设计,由上海生物工程公司合成。兔抗鼠HO-1多克隆抗体、羊抗鼠TNFα多克隆抗体、羊抗鼠IL-6多克隆抗体、鼠抗鼠β-肌动蛋白多克隆抗体购于美国Santa Cruz公司。辣根过氧化物酶标记的驴抗羊、羊抗兔及兔抗小鼠多克隆第二抗体购自北京中杉金桥生物技术有限公司。 2. 实验动物、模型建立及标本采集:清洁级7~8周龄健康雄性C57BL/6J小鼠20只,体质量20~25g(购于石家庄北京军区白求恩国际和平医院动物实验室),随机分为4组(n=5)。对照组以DL-蛋氨酸(3g/kg)和氯化胆碱(2g/kg)充足的饲料喂养;模型组以胆碱-蛋氨酸缺乏饲料喂养;血晶素组:以MCD饮食喂养,同时腹腔注射血晶素30μmol/kg,隔日一次(血晶素溶液配制:根据小鼠体质量称取所需量,以0.2mol/L NaOH溶解,用1mol/L的HCl调pH值至7.4左右,用等渗盐水稀释至终浓度为10mmol/L);锌原卟啉组:以MCD饮食喂养,同时腹腔注射ZnPP-IX 20μmol/kg,隔日一次(配制方法同血晶素)[2]。喂养4周,在深度麻醉下处死动物,留取血清和肝组织标本。部分肝组织以4%甲醛溶液固定,备做病理切片,其余肝组织用液氮快速冷冻、置于-80℃冰箱保存,备提取RNA、蛋白质。 3. 血清ALT、AST检测:Olympus AU 2700全自动生化分析仪酶法测定。 4. 肝组织病理学观察:40%甲醛溶液固定肝组织标本,石蜡包埋,常规切片,HE染色,光学显微镜下观察肝组织学变化,参照《非酒精性脂肪性肝病诊疗指南》[3]及《病毒性肝炎防治方案》[4],肝脂肪变分为4度(F0~4),炎症活动度分为3级(G0~3),肝纤维化分为4期(S0~4)。 5. 肝组织HO-1、TNFα、IL-6 mRNA检测:采用RT-PCR,Trizol试剂一步法提取肝组织总RNA,以寡脱氧核苷酸和M-MLV逆转录酶制备cDNA。用Taq DNA多聚酶PCR扩增cDNA产物,以3-磷酸甘油醛脱氢酶(GAPDH)为内参照,PCR反应参数为:94℃ 5min;94℃ 30s,58℃ 30s,72℃ 30s,循环35次,72℃ 5min。引物序列见表1。取10μl PCR扩增产物经20g/L琼脂糖凝胶电泳分离,应用Bio-profif凝胶图像分析系统进行灰度比值半定量分析。 6.肝组织HO-1、TNFα、IL-6蛋白表达检测:采用Western blot,以含蛋白酶抑制剂的组织裂解液提取肝组织蛋白,紫外分光光度计(750nm)测定蛋白质浓度。取100μg蛋白经12%十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离,转移到硝酸纤维素膜,封闭后,分别与兔抗鼠HO-1多克隆抗体、山羊抗鼠TNFα多克隆抗体和山羊抗鼠IL-6多克隆抗体反应后与相应的辣根过氧化物酶标记的IgG抗体进行免疫反应,化学发光显色,胶片曝光显影。以β-肌动蛋白为内参照。采用美国Kodak公司ID数码成像分析系统软件对Western blot结果进行半定量分析,灰度值以积分吸光度值(IA)表示。 7.统计学处理:用SAS8.0统计软件,实验数据用均数±标准差(x-±s)表示,采用单因素方差分析,以Student-Newman-Keuls法进行组间比较,P<0.05为差异有统计学意义。 结 果 1.实验动物血清ALT、AST变化:血清ALT和AST水平依次为锌原卟啉组>模型组>血晶素组>对照组(表略),各组间差异具有统计学意义(P<0.01)。 表略 各组实验小鼠血清ALT和AST水平(x-±s) 组别 例数 ALT(U/L) AST(U/L) 对照组 5 31.43± 4.76 34.73± 6.16 模型组 5 267.03±31.50 517.43±20.84 血晶素组 5 85.50±16.49 150.38±14.37 锌原卟啉组 5 499.74±14.09 775.52±63.29 F值 568.44 290.82 P值 <0.01 <0.01 2.肝脏组织病理学观察:对照组小鼠肝组织病理学无明显异常;模型组小鼠可见大泡性脂肪变、肝细胞水样变,以腺泡3带为著,肝窦间隙变窄,小叶内可见点状或灶状肝细胞坏死,伴有淋巴细胞、单核细胞和少量中性粒细胞浸润,为F2~3G1~2S1;应用血晶素小鼠肝损伤较模型组明显减轻,肝细胞脂肪变轻微、轻度水样变,未见明显肝细胞坏死及炎性细胞浸润,为F0~1G0S0;应用锌原卟啉小鼠肝细胞重度脂肪变性、炎细胞浸润、窦周纤维化较模型组更加明显,病变程度相当于F3G2S1~2(图略)。 3.实验小鼠肝组织HO-1、TNFα、IL-6 mRNA及蛋白表达:模型组HO-1 mRNA及蛋白表达较对照组增强,加用血晶素组其表达进一步增强;而锌原卟啉干预组HO-1 mRNA及蛋白表达显著低于上述各组。与对照组比较,模型组、锌原卟啉干预组肝组织TNFα、IL-6 mRNA及蛋白表达显著增强,而血晶素干预组二者表达均明显减弱(表略,图略);各组间差异具有统计学意义(表略,图略)。 讨 论 随着脂肪肝及其相关并发症发病率的增高,非酒精性脂肪性肝炎的发病机制及靶向性治疗药物的研究已成为近年关注的热点。氧化应激和脂质过氧化反应在NASH的发生和发展过程中起着重要作用[5-6]。TNFα、IL-6是促进肝脂肪变性和炎症形成的关键性细胞因子,在NASH的临床和动物实验研究中发现其血清中含量明显增加[7-8]。本研究结果显示,在MCD饮食导致的NASH模型中,肝组织TNFα、IL-6 mRNA和蛋白的表达显著上调,肝脂肪变性、炎症反应程度加重,血清ALT、AST水平明显升高,与Olleros等[9]的研究结果一致。推测MCD饮食使肝组织中游离脂肪酸增多,产生了大量的ROS,激活核因子-κB(NF-κB),进而促使促炎因子TNFα、IL-6等释放,后者通过C-Jun氨基末端激酶途径,导致脂质过氧化而引起肝脏炎症[10]。 HO是一种催化血红素降解的起始酶和限速酶,体内存在三种形式,HO-1为其诱导型,其活性可在血红素、低氧、活性氧、细胞因子、内毒素等多种应激状态下上调,是细胞发生氧化应激反应的主要敏感指标之一。HO-1高表达为针对应激性刺激的外源性调节机制,能够保护细胞免于应激性损伤。Malaguarnera等[11]发现HO-1在非酒精性脂肪肝患者肝穿组织中表达明显增强,并与脂质过氧化、肝损伤程度显著相关,表明HO-1在非酒精性脂肪性肝炎的进程中起关键作用。本研究结果提示HO-1的诱导表达可能是对抗脂质过氧化引起的氧化损伤的适应性反应,HO-1表达上调可通过抑制促炎性因子TNFα、IL-6的表达阻止非酒精脂肪性肝炎的发生和进展。Wen等[12]在D-半乳糖和脂多糖诱导的大鼠急性肝损伤模型中,通过血晶素预处理,诱导HO-1的表达,能显著改善肝脏组织学改变,并且肝脏iNOS/NO生成、TNFα及caspase-3表达水平均明显降低,表明HO-1的诱导能通过抗氧化、抗炎和抗凋亡等机制保护肝细胞。因此,在多种病理条件下,HO-1表达的上调均具有抗氧化和抗炎症功能[13],其潜在的机制可能为:(1)肝组织中HO-1表达上调抑制转录因子NF-κB的活化,进一步减少TNFα、IL-6释放。(2)HO-1通过其降解产物胆绿素/胆红素和CO途径减轻TNFα介导的肝细胞损伤[14];有研究结果显示,胆绿素及胆红素能有效地清除ROS并抑制脂质过氧化,胆红素可以阻断蛋白激酶C和烟酰胺腺嘌呤二核苷磷酸氧化酶的活性;低浓度CO能特异性和选择性地抑制炎症因子TNFα、IL-1β、巨细胞炎症蛋白-1β等的表达,同时增加抗炎症因子IL-10的表达。(3)诱导抗氧化酶的表达:有研究结果显示,增加HO-1蛋白水平和活性可明显提高超氧化物歧化酶和过氧化氢酶水平,从而发挥抗氧化应激作用。 上述结果表明,抗氧化基因HO-1靶向激活可通过对抗氧化应激反应、抑制促炎因子TNFα、IL-6的表达阻止非酒精性脂肪性肝炎的发生及进展,抗氧化基因的调控或抗氧化剂的应用可能为有效治疗非酒精性脂肪性肝炎的重要措施。 参 考 文 献 [1]Marra F, Gastaldelli A, Svegliati Baroni G, et al. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med, 2008, 14: 72-81. [2]Xue H, Guo H, Li YC, et al. Heme oxygenase-1 induction by hemin protects liver cells from ischemia/reperfusion injury in cirrhotic rats. World J Gastroenterol, 2007, 13: 5384-5390. [3]Fatty Liver and Alcoholic Liver Disease Study Group of Chinese Liver Disease Association. Guidelines for diagnosis and treatment of nonalcoholic fatty liver diseases. Zhonghua Ganzangbing Zazhi, 2006, 14: 161-163.(in Chinese) 中华医学会肝病学分会脂肪肝和酒精性肝病学组.非酒精性脂肪性肝病诊疗指南.中华肝脏病杂志,2006,14:161-163. [4]Chinese Society of Infectious Diseases and Parasitology and Chinese Society of Hepatology of Chinese Medical Association. The programme of prevention and cure for viral hepatitis. Zhonghua Ganzangbing Zazhi, 2000, 8: 324-329. (in Chinese) 中华医学会传染病与寄生虫病学分会、肝病学分会.病毒性肝炎防治方案.中华肝脏病杂志,2000,8:324-329. [5]Nan YM, Wu WJ, Fu N, et al. Antioxidants vitamin E and 1-aminobenzotriazole prevent experimental non-alcoholic steatohepatitis in mice. Scand J Gastroenterol, 2009, 44: 1121-1131. [6]Nan YM. Advances on the mechanism of nonalcoholic liver diseases. Xiandai Xiaohua Ji Jieru Zhenliao, 2009, 14: 169-172. (in Chinese) 南月敏.非酒精性脂肪性肝病发病机制的研究进展。现代消化及介入诊疗,2009,14:169-172. [7]Balmer ML, Siegrist K, Zimmermann A, et al. Effects of ursodeoxycholic acid in combination with vitamin E on adipokines and apoptosis in patients with nonalcoholic steatohepatitis. Liver Int, 2009, 29: 1184-1188. [8]Wieckowska A, Papouchado BG, Li Z, et al. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol, 2008, 103: 1372-1379. [9]Olleros ML, Martin ML, Vesin D, et al. Fat diet and alcohol-induced steatohepatitis after LPS challenge in mice: role of bioactive TNF and Th1 type cytokines. Cytokine, 2008, 44: 118-125. [10]Wang Y, Ausman LM, Greenberg AS, et al. Nonalcoholic steatohepatitis induced by a high-fat diet promotes diethylnitrosamine-initiated early hepatocarcinogenesis in rats. Int J Cancer, 2009, 124: 540-546. [11]Malaguarnera L, Madeddu R, Palio E, et al. Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients. J Hepatol, 2005, 42: 585-591. [12]Wen T, Wu ZM, Liu Y, et al. Upregulation of heme oxygenase-1 with hemin prevents D-galactosamine and lipopolysaccharide-induced acute hepatic injury in rats. Toxicology, 2007, 237: 184-193. [13]Zhu Z, Wilson AT, Mathahs MM, et al. Heme oxygenase-1 suppresses hepatitis C virus replication and increases resistance of hepatocytes to oxidant injury. Hepatology, 2008, 48: 1430-1439. [14]Bauer M, Huse K, Settmacher U, et al. The heme oxygenase-carbon monoxide system: regulation and role in stress response and organ failure. Intensive Care Med, 2008, 34: 640-648. (收稿日期:2010-01-25) (本文编辑:金生) 中华医学会肝脏病杂志版权 |