淮安市淮安区中医院肝病科
淮安肝病120网|骆稚平主任医师|淮安市楚州区中医院肝病科
专家论文
您的位置:网站首页 > 专家论文

原发性肝癌的分子靶向治疗新进展

作者:於雷 代智 周俭 樊嘉 来源: 日期:2010-10-31 21:56:45 人气: 标签:

 

【关键词】肝肿瘤; 分子靶向治疗

Current advances in molecular targeted therapy of primary hepatocellular carcinoma   YU Lei, DAI Zhi, ZHOU Jian, FAN Jia.

Key wordsLiver neoplasms; Molecular targeted therapy

First author’s addressLiver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China

Corresponding author: ZHOU Jian, Email: zhou.jian@ zs-hospital.sh.cn

 

肝癌是常见的恶性疾病,起病隐匿,明确诊断时常常已到晚期,且多合并肝硬化等,丧失了手术切除肿瘤的机会,病死率高。近年来,随着对肝癌发生发展分子机制认识的不断深入,分子靶向治疗成为肝癌治疗的一个新手段。一些分子靶向药物有望在延长肿瘤无进展期、提高生存质量方面使患者获益。

根据肝癌发生发展的过程,分子靶向治疗主要集中在肿瘤血管生成、细胞黏附、基质降解、肿瘤细胞增殖四个方面。对肿瘤信号传导途径的干涉,则是分子靶向治疗的另一个思路。

1. 抗肿瘤血管生成:血管生成在肿瘤形成中的作用非常重要。没有新生血管形成,实体肿瘤生长将不能超过12mm。因此,抗肿瘤新生血管生成在抗肿瘤生长及转移方面具有重要意义。(1)血管内皮细胞生长因子(vascular endothelial growth factor, VEGF)及其受体(VEGFR)是最受关注的干预靶点。Bevacizumab是抑制VEGF的单克隆抗体,目前已完成了针对不能切除肝癌的Ⅱ期临床试验,46例受试患者的6个月肿瘤无进展比例为65%123年总体生存率为53%28%23%[1]。类肝素硫酸盐PI-88(一种VEGF抑制剂)也已进入Ⅲ期临床试验,可能对减少肝切除术后复发转移率有作用[2]Hammerhead ribozyme能特异性抑制VEGF基因表达,可能具有治疗价值[3]。最近推出的分子靶向药物索拉非尼(Sorafenib)也具有抑制血管生成的作用。Sorafenib能抑制酪氨酸激酶受体,其中与血管生成相关的包括VEGFR-2VEGFR-3以及血小板衍生生长因子[4]。目前口服Sorafenib治疗晚期肝癌的Ⅱ、Ⅲ期临床试验已完成,在Ⅲ期试验中,受试患者能获得比安慰剂组长3个月的生存时间和影像学无进展期[5]PTK787也是一个酪氨酸激酶受体抑制剂,可通过抗血管生成阻止肝癌生长[6]Yoshiji[7]报道针对VEGFR-1VEGFR-2设计的单克隆抗体R1 mAbR2 mAb能抑制肝癌生长并阻止肝癌肺转移。另外有针对VEGFR-1的基因治疗,也取得了抑制肝癌生长的效果[8]。(2)缺氧诱导因子(hypoxia induced factorHIF)也是抑制肿瘤血管形成的重要靶点。Kung[9]chetomin干扰HIF抑制肿瘤生长。3-(5-hydroxymethyl-2-furyl)-1-benzylindazole可能成为第一个以HIF为靶点治疗肝癌生长的药物,其效果也经动物实验证明[10]。其他还有一些HIF靶向药物如ENMD-1198等,效果待评估[11]

2. 抗肿瘤细胞间黏附力下降:肿瘤细胞黏附是肿瘤转移复发的关键步骤,也是目前分子靶向治疗的热点之一。(1)在上皮钙黏蛋白(epithelial calcium-dependent cell adhesion proteinsE-cad)位点上,早在10年前有学者报道将启动子区域基因甲基化后E-cad表达显著减少,可使细胞间黏附消失,组织形态破坏,可能导致肝癌形成。近来Kanai[12]在临床试验中用LY2109761上调E-cad阻断肝癌复发转移。(2Wnt/β-catenin通路是肿瘤细胞黏附干预的重要靶点。Imatinib可干扰Wnt/β-catenin通路阻止肿瘤转移,在治疗纤维肉瘤的Ⅱ期临床试验中获得了较好的效果。其他的一些针对Wnt/β-catenin的靶向药物如M475271AZD0530Bosutinib对减少前列腺癌、乳腺癌等肿瘤的转移取得了一定效果[13-15]。在肝癌的实验性干预研究方面,Zeng[16]用小分子RNA干扰β-catenin影响肝癌细胞的生长及存活。有学者用CelecoxibR-Etodolac干扰肝癌细胞的分化和生存。但目前尚无针对Wnt/β-catenin的靶向药物应用于肝癌临床试验。(3Agelastatin A是近来发现的以骨桥蛋白为靶点的抑制剂,并成功抑制了乳腺癌细胞的生长和转移,但尚未应用在肝癌的临床治疗中[17]。(4Gefitinib是一个主要针对表皮生长因子受体的分子靶向药物,最近的研究结果表明抑制细胞黏附分子Integrin也是其抑制肝癌转移的机制之一[18]

3. 抗基质降解:微环境改变在肿瘤转移复发过程中是不可或缺的,细胞外基质降解是其中重要一环。(1)基质金属蛋白酶(matrix metalloproteinaseMMP)是这一环节中主要的靶点。HAb18G/CD147是一个重要的肝癌相关抗原,可促进肿瘤细胞分泌MMP,导致肝癌转移复发[19]。利卡汀(Licartin)是针对HAb18G/CD147的单克隆抗体,可显著减少MMP分泌,降低肝癌转移。目前在肝癌治疗中已完成Ⅰ、Ⅱ期临床试验,在延缓肿瘤进展、提高生存率方面取得了较好的效果[20]Xu[21]通过随机对照试验证实了Licartin降低肝癌原位肝移植患者术后肿瘤复发率的肯定效果。Benzyl isothiocyanate可通过促分裂原活化蛋白激酶途径降低MMP-2/-9的分泌,从而降低肝癌细胞侵袭性[22]BB-94Batimastat)是MMP抑制药物,在动物实验中被证实具有能抑制人肝癌细胞侵袭的作用[23]。小干扰RNA可减少MMP-11的表达,从而减少肝癌细胞向淋巴结转移。(2)尿激酶型纤溶酶原激活物是另一个抗基质降解的靶点,最近Wang[24]认为尿激酶型纤溶酶原激活物基因是多分子靶向药物Dasatinib的一个干预位点。但在肝癌干预或治疗中,尚未在这方面进行明确的靶向治疗。

4. 抗细胞增殖:近来有很多实验干预和分子靶向治疗都聚焦于抗细胞增殖领域。上皮细胞生长因子(epidermal growth factor, EGF)通路、转化生长因子β(transforming growth factor betaTGFβ)通路和肿瘤细胞周期的抑制是主要靶点。(1)在肝癌治疗中针对EGF受体(EGFR)的靶向药物主要有CetuximabErlotinibGefitinibCetuximabEGFR的单克隆抗体,曾拟用于进展期肝癌的治疗,但在Ⅱ期临床试验中被证实没有抗肿瘤作用。但最近Asnacios[25]CetuximabGemcitabineoxaliplatin联用体现了较好的肝癌治疗效果和可控的不良反应。ErlotinibGefitinib则是通过阻断酪氨酸激酶达到抑制EGFR的目的。Erlotinib在治疗不能切除的进展期肝癌中也已完成了Ⅱ期临床试验,结果表明患者能从中获得益处,但效果并不显著[26]Huether[27]则认为与传统药物相比,Erlotinib具有更好的抗肝癌效果。Gefitinib主要应用于非小细胞性肺癌的治疗,在肝癌领域目前尚处在临床前试验阶段。Matsuo[28]在小鼠实验中发现Gefitinib具有很好的抑制肝癌生长和肝内转移的效果。最近,不少学者对Gefitinib抑制肝癌的机制进行了进一步研究[29]。总之,目前认为Gefitinib治疗肝癌的临床试验是值得期待的。目前在实验阶段证实对肝癌生长或转移有疗效的EGFR靶向药物还有VandetanibPD153035AG1478等,但疗效尚需进一步的验证和临床试验证实[30-32]。(2TGFβ受体是抗细胞增殖环节中的另一个靶点。LY2109761是一个较新的TGFβ受体激酶抑制剂,它能抑制肝癌细胞转移侵袭,并认为其有临床试验价值。(3)阻断细胞循环周期、诱导细胞凋亡是阻止肝癌生长的策略之一。许多抑癌基因如p53p27p16等就是通过抑制细胞进入细胞周期发挥作用的。这些基因中,p53最具临床应用价值。野生型p53基因可阻止细胞进入细胞周期,导致细胞凋亡。将野生型p53基因通过病毒转染的方式导入p53突变的肝癌细胞是常用的策略,可重建p53表达,诱导肿瘤细胞凋亡[33]Dl1520E1B-deleted adenovirus)能使p53缺失或突变的肝癌细胞自溶,目前已完成Ⅰ、Ⅱ期临床试验,但效果不佳,一些学者认为更有效的中介体可能提高疗效[34]。细胞周期素依赖激酶抑制剂Flavopiridol目前已应用在肝癌细胞实验中,可对肝癌细胞生长产生抑制作用。以细胞周期素依赖激酶为靶点的抑制剂还有RoscovitineBMS-387032AZD5438SU9516,目前在肝癌实验性干扰或治疗中的应用尚未有报道。

5. 关于肝癌细胞信号传导通路:在肝癌的分子靶向治疗中,另外一个思路就是阻断细胞信号传导通路。许多靶向药物的设计初衷就是干扰肿瘤细胞信号传导。与肝癌细胞生长和转移复发相关的分子通路主要有4条:Ras/Raf/Mek/ErkPI3k/Akt/mTORWnt/β-catenin和核因子-κB NFκB)。其中Wnt/β-catenin通路在前面已述。(1) Ras/Raf/Mek/Erk通路:Ras法尼基化抑制剂(LovastatinPD152440)、Raf激酶抑制剂(SorafenibNovartis)、Mek/Erk抑制剂(PD0325901AZD6244PD98059U0126PD184161)均有报道。(2PI3k/Akt/mTOR通路:有PI3K抑制剂(LY294002Wortmannin)、mTOR抑制剂(RapamycinRAD001)。(3NF-κBNF-κB抑制剂有BortezomibMG132PS-341

信号通路把各个功能分子串联成线,不同通路间某些分子的交互作用(Cross-talk)等使信号传导成为一个网络。这使得分子靶向面临更复杂的局面。当通路中某个靶点被抑制,肿瘤细胞通过分子交互作用使其下游分子重新被激活,使信号绕过该靶点继续传导,从而导致癌细胞耐药。许多靶向药物效果不佳与此相关。因此,信号传导网络的存在对分子靶向治疗是一个挑战。

6. 总结:分子靶向治疗目前已经取得一些临床效果,主要获益者是不能手术治疗的晚期肝癌患者。从机制而言,外科治疗结合分子靶向治疗是相辅相成的,一些药物如Licartin结合外科治疗已使患者获益。另一方面,分子靶向治疗刚进入临床应用,即使是目前备受推崇的药物(如Sorafenib)也只是将肿瘤无进展期的基线控制在6个月内。因此,分子靶向治疗肝癌仍需基础和临床研究的不断探索。

     

[1]Siegel AB, Cohen EI, Ocean A, et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol, 2008, 26: 2992-2998.

[2]Ferro V, Dredge K, Liu L, et al. PI-88 and novel heparan sulfate mimetics inhibit angiogenesis. Semin Thromb Hemost, 2007, 33:557-568.

[3]Morino F, Tokunaga T, Tsuchida T, et al. Hammerhead ribozyme specifically inhibits vascular endothelial growth factor gene expression in a human hepatocellular carcinoma cell line. Int J Oncol, 2000, 17: 495-499.

[4]Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res, 2006, 66: 11851-11858.

[5]Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma.  N Engl J Med, 2008, 359: 378-390.

[6]Liu Y, Poon RT, Li Q, et al. Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res, 2005, 65: 3691-3699.

[7]Yoshiji H, Kuriyama S, Yoshii J, et al. Halting the interaction between vascular endothelial growth factor and its receptors attenuates liver carcinogenesis in mice. Hepatology, 2004, 39: 1517-1524.

[8]Graepler F, Verbeek B, Graeter T, et al. Combined endostatin/sFlt-1 antiangiogenic gene therapy is highly effective in a rat model of HCC. Hepatology, 2005, 41: 879-886.

[9]Kung AL, Zabludoff SD, France DS, et al. Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell, 2004, 6: 33-43.

[10]Lau CK, Yang ZF, Lam CT, et al. Suppression of hypoxia inducible factor-1alpha (HIF-1alpha) by YC-1 is dependent on murine double minute 2 (Mdm2). Biochem Biophys Res Commun, 2006, 348: 1443-1448.

[11]Moser C, Lang SA, Mori A, et al. ENMD-1198, a novel tubulin-binding agent reduces HIF-1alpha and STAT3 activity in human hepatocellular carcinoma(HCC) cells, and inhibits growth and vascularization in vivo. BMC Cancer, 2008, 8: 206.

[12]Kanai Y, Ushijima S, Hui AM, et al. The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas. Int J Cancer, 1997, 71: 355-359.

[13]Ali N, Yoshizumi M, Yano S, et al. The novel Src kinase inhibitor M475271 inhibits VEGF-induced vascular endothelial-cadherin and beta-catenin phosphorylation but increases their association. J Pharmacol Sci, 2006, 102: 112-120.

[14]Chang YM, Bai L, Liu S, et al. Src family kinase oncogenic potential and pathways in prostate cancer as revealed by AZD0530. Oncogene, 2008, 27: 6365-6375.

[15]Vultur A, Buettner R, Kowolik C, et al. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol Cancer Ther, 2008, 7: 1185-1194.

[16]Zeng G, Apte U, Cieply B, et al. siRNA-mediated beta-catenin knockdown in human hepatoma cells results in decreased growth and survival. Neoplasia, 2007, 9: 951-959.

[17]Mason CK, McFarlane S, Johnston PG, et al. Agelastatin A: a novel inhibitor of osteopontin-mediated adhesion, invasion, and colony formation. Mol Cancer Ther, 2008, 7: 548-558.

[18]Ueno Y, Sakurai H, Matsuo M, et al. Selective inhibition of TNF-alpha-induced activation of mitogen-activated protein kinases and metastatic activities by gefitinib. Br J Cancer, 2005, 92: 1690-1695.

[19]Yu XL, Hu T, Du JM, et al. Crystal structure of HAb18G/CD147: implications for immunoglobulin superfamily homophilic adhesion. J Biol Chem, 2008, 283: 18056-18065.

[20]Chen ZN, Mi L, Xu J, et al. Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (131I) metuximab injection: clinical phase I/II trials. Int J Radiat Oncol Biol Phys, 2006, 65: 435-444.

[21]Xu J, Shen ZY, Chen XG, et al. A randomized controlled trial of Licartin for preventing hepatoma recurrence after liver transplantation. Hepatology, 2007, 45: 269-276.

[22]Hwang ES, Lee HJ. Benzyl isothiocyanate inhibits metalloproteinase-2/-9 expression by suppressing the mitogen-activated protein kinase in SK-Hep1 human hepatoma cells. Food Chem Toxicol, 2008, 46: 2358-2364.

[23]Ye SL. More attention to targeted therapy of primary hepatocellular carcinoma. Zhonghua Ganzangbing Zazhi, 2005, 13, 322-323. (in Chinese)

叶胜龙.关注原发性肝癌的靶向治疗研究.中华肝脏病杂志, 2005,13:322-323.

[24]Wang XD, Reeves K, Luo FR, et al. Identification of candidate predictive and surrogate molecular markers for dasatinib in prostate cancer: rationale for patient selection and efficacy monitoring. Genome Biol, 2007, 8: R255.

[25]Asnacios A, Fartoux L, Romano O, et al. Gemcitabine plus oxaliplatin (GEMOX) combined with cetuximab in patients with progressive advanced stage hepatocellular carcinoma: results of a multicenter phase 2 study. Cancer, 2008, 112: 2733-2739.

[26]Thomas MB, Chadha R, Glover K, et al. Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma. Cancer, 2007, 110: 1059-1067.

[27]Huether A, Hfner M, Sutter AP, et al. Erlotinib induces cell cycle arrest and apoptosis in hepatocellular cancer cells and enhances chemosensitivity towards cytostatics. J Hepatol, 2005, 43: 661-669.

[28]Matsuo M, Sakurai H, Saiki I. ZD1839, a selective epidermal growth factor receptor tyrosine kinase inhibitor, shows antimetastatic activity using a hepatocellular carcinoma model. Mol Cancer Ther, 2003, 2: 557-561.

[29]Ueda S, Basaki Y, Yoshie M, et al. PTEN/Akt signaling through epidermal growth factor receptor is prerequisite for angiogenesis by hepatocellular carcinoma cells that is susceptible to inhibition by gefitinib. Cancer Res, 2006, 66: 5346-5353.

[30]Giannelli G, Azzariti A, Sgarra C, et al. ZD6474 inhibits proliferation and invasion of human hepatocellular carcinoma cells. Biochem Pharmacol, 2006, 71: 479-485.

[31]Liu Y, Poon RT, Shao W, et al. Blockage of epidermal growth factor receptor by quinazoline tyrosine kinase inhibitors suppresses growth of human hepatocellular carcinoma. Cancer Lett, 2007, 248: 32-40.

[32]Liu D, Aguirre Ghiso J, Estrada Y, et al. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell, 2002, 1: 445-457.

[33]Lee TK, Han JS, Fan ST, et al. Gene delivery using a receptor-mediated gene transfer system targeted to hepatocellular carcinoma cells. Int J Cancer, 2001, 93: 393-400.

[34]Miyashita K, Shiraki K, Fuke H, et al. The cyclin-dependent kinase inhibitor flavopiridol sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis. Int J Mol Med, 2006, 18: 249-256.

 

中华肝脏病杂志版权多动症